BAWN 005-GBR-1 11/2011 # Assembly and operating instructions Elastic coupling # Nor-Mex® EBT, ETW #### RINGFEDER POWER TRANSMISSION GMBH ### Content | Chapt | ter | Page | |-------|--|------| | 1 No | otes on safety | 2 | | 2 Fu | unction | 3 | | 2.1 | Appropriate Use | 3 | | 3 Ma | arking of the coupling | | | | torage | | | | onstruction | | | | echnical data | | | 7 As | ssembly | 3 | | 7.1 | Pay attention before the assembly | 3 | | 7.2 | Finished borehole | 9 | | 7.3 | Installing coupling | 10 | | 8 Ac | djusting coupling | 11 | | 8.1 | Angular misalignment ΔK_w | 12 | | 8.2 | Radial displacement ΔK_r | 12 | | 8.3 | Axial displacement | | | 9 0 | peration | 14 | | | aintenance | | | 10.1 | Wear Inspection on the Buffer Ring | 17 | | 10.2 | Wear limit of elastic buffers | 18 | | 10.3 | Changing the elastic intermediate ring | 18 | | 10.4 | Assembly brake drum/disk | 19 | | 11 W | /aste Disposal | | This Installation and Operation Manual is also applicable to the coupling type EBS. # 1 Notes on safety The present assembly and operating instruction (AOI) constituents a part of the coupling supply. Always keep the AOI near the coupling well accessible. The German version of this manual is the predominant and binding version. Make sure that all persons charged with the assembly, operating, service, and maintenance have read and understood the AOI and follow all the points: - Avert hazards for body and live of the user and third parties. - Ensure the operating safety of the coupling. - Avoid the loss of use and environmental impairment through false handling. In the case of transport, mounting, dismounting and maintenance, attention is to be paid to the relevant regulations for industrial safety and for environmental care. The coupling may only be operated, mounted, serviced and maintained by authorised and trained personnel. The user must take into account that the bolting elements of coupling parts may be adversely affected by the heat produced by a brake disk/ brake drum due to the resultant friction. Make sure that the combination of the employed brake lining with the material of the brake disk/ brake drum does not lead to sparks or impermissible thermal growth. The brake disk is normally made of steel, and the brake drum is normally made of cast iron with nodular graphite. In case of any doubt, please consult the supplier! In the interest of further development, we reserve the right to make changes which serve technological progress. By the use of accessories and spare parts, which were not originally manufactured by TSCHAN GmbH, we are not responsible for any resulting damage or liability or guarantee. ### 2 Function The coupling NOr-Mex [®] -EBT, ETW is a torsionally elastic and puncture-proof claw coupling. It balances out angular, radial, and axial shaft misalignments within defined limits. The coupling transfers the torque via pressure loadable, elastic buffers of Perbunan (Pb) which are joined together as an intermediate ring. The elastic intermediate ring can cushion impacts and torsional vibrations; it is oil-tight and electrically conductive. The coupling is usable in every sense of rotation and installation position. ### 2.1 Appropriate Use - The coupling must only be operated in normal industrial atmospheres. Since aggressive media may attack the coupling components, screws and elastic buffer rings, they represent a risk for the operational safety of the coupling. Consult TSCHAN GmbH in such cases. - In order to ensure a faultless, lasting operation of the coupling it must be laid out according to the layout instructions e.g. DIN 740 part 2 (or also catalogue NOr-Mex ®) with an operating facture corresponding to the operating conditions. - Apart from incorporating a finished bore hole with parallel key groove (see "7.2 Finished borehole") no further changes can be carried out on the coupling. - The coupling may only be used within the framework of the conditions defined in the performance and delivery contract. - Every change of the conditions of use or the operating parameters necessitates a new verification of the coupling layout. # 3 Marking of the coupling The product line NOr-Mex [®] has its hardness in Shore (A) indicated on the elastic intermediate ring. # 4 Storage On receipt of the goods, the supply is to be checked immediately for completeness and correctness. Possible damages incurred during transit and / or missing parts are to be notified in writing. The coupling parts can be stored in their delivered standard-state for 6 months in a dry, roofed place at normal room temperature. For a longer storage duration a long-term preservation is necessary (consult TSCHAN GmbH). The elastic intermediate ring must not be subjected to ozone containing mediums, direct solar influence or strong light sources with ultraviolet-light. The relative humidity must not exceed 65%. In the case of proper storage the characteristics of the elastic intermediate ring remain unchanged for almost up to three years. ### 5 Construction Fig. 1 Construction Nor-Mex[®] EBT, ETW ### **Details:** Coupling hub (Pos. 3) and brake drum/disk (Pos. 4/5) are delivered bolted together with locking washer (Pos. 6) and hexagon head screw (Pos. 7). Balanced parts are match marked to each other. # 6 Technical data Fig. 2 Nor-Mex[®] EBT, ETW Table 1 Technical Data: | size
Nor-Mex | T _{Cnom}
Pb72 | T _{Cpeak}
Pb72 | T _{Cnom}
Pb82 | T _{Cpeak}
Pb82 | |-----------------|---------------------------|----------------------------|---------------------------|----------------------------| | 1401 WCX | [Nm] | [Nm] | [Nm] | [Nm] | | 112 | 150 | 310 | 230 | 540 | | 128 | 250 | 500 | 380 | 860 | | 148 | 390 | 800 | 600 | 1350 | | 168 | 630 | 1300 | 980 | 2250 | | 194 | 1050 | 2000 | 1650 | 3630 | | 214 | 1500 | 3100 | 2400 | 5400 | | 240 | 2400 | 4800 | 3700 | 8650 | | 265 | 3700 | 7500 | 5800 | 13500 | | 295 | 4900 | 10000 | 7550 | 18000 | | 330 | 6400 | 13000 | 9900 | 23400 | | 370 | 8900 | 18200 | 14000 | 32750 | | 415 | 13200 | 27000 | 20500 | 49000 | Table 2 Nor-Mex[®] EBT: | d ₅ | D _B -B | T_{BR} | n _{max} | d₁ | d ₆ | d ₃ | d ₇ | Ι _Ε | LE | С | S ₁ | zxMxLs | MA | m | |----------------|--------------------|----------|----------------------|-------------|----------------|----------------|----------------|----------------|-------|--------------|----------------|--------------------------------|------------|------------------| | [mm] | [Nm] | [Nm] | [min ⁻¹] | max
[mm] | max
[mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | DIN 933 8.8 | [Nm] | undrilled
[kg | | 112 | 200-75 | 450 | 4200 | 48 | 42 | 79 | 68 | 60 | 123,5 | 11,0 | 3,5±1,0 | 6 x M8 x 20 | 25 | 9,9 | | 128 | 200-75 | 550 | 4200 | 55 | 52 | 90 | 85 | 70 | 143,5 | 16,0 | 3,5±1,0 | 6 x M8 x 25 | 25 | 13,0 | | 148 | 250-95 | 1000 | 3400 | 65 | 58 | 107 | 94 | 80 | 163,5 | 16,0 | 3,5±1,0 | 6 x M10 x 25 | 49 | 21,1 | | 168 | 250-95
315-118 | 1600 | 3400
2700 | 75 | 72 | 124 | 118 | 90 | 183,5 | 19,0
8,0 | 3,5±1,5 | 8 x M10 x 30
8 x M10 x 30 | 49 | 27,7
36,9 | | 194 | 315-118 | 2750 | 2700 | 85 | 85 | 140 | 138 | 100 | 203,5 | 16,5 | 3,5±1,5 | 8 x M12 x 30 | 85 | 44,7 | | 214 | 315-118
400-150 | 3350 | 2700
2100 | 95 | 92 | 157 | 153 | 110 | 224,0 | 19,0
12,5 | 4,0±2,0 | 9 x M12 x 35 | 85 | 55,0
70,8 | | 240 | 450-150
500-190 | 4200 | 2100
1700 | 110 | 102 | 179 | 168 | 120 | 244,0 | 18,0
9,0 | 4,0±2,0 | 10 x M12 x 35 | 85 | 84,4
111,4 | | 265 | 500-190 | 8700 | 1700 | 120 | 120 | 198 | 198 | 140 | 285,5 | 22,0 | 5,5±2,5 | 10 x M16 x 40 | 210 | 134,1 | | 295 | 500-190
630-236 | 9800 | 1700
1360 | 130 | 130 | 214 | 214 | 150 | 308,0 | 30,0
5,0 | 8,0±2,5 | 10 x M16 x 40
10 x M16 x 45 | 210
210 | 153,9
207,5 | | 330 | 630-236
710-265 | 10600 | 1360
1200 | 150 | 150 | 248 | 248 | 160 | 328,0 | 11,0
0,0 | 8,0±2,5 | 10 x M16 x 45 | 210 | 243,1
281,3 | | 370 | 710-265 | 13500 | 1200 | 170 | 170 | 278 | 278 | 180 | 368,0 | 15,0 | 8,0±2,5 | 11 x M16 x 45 | 210 | 366,2 | | 415 | 710-265 | 16000 | 1200 | 190 | 185 | 315 | 308 | 200 | 408,0 | 25,0 | 8,0±2,5 | 12 x M16 x 55 | 210 | 415,4 | Table 3 Nor-Mex[®] ETW: | d_5 | A-G | T _{BR} | n _{max} | d₁ | d ₆ | d ₃ | d ₇ | ΙE | LE | C ₁ | C ₂ | S ₁ | zxMxLs | MA | m | |-------|--|-----------------|------------------------------|-------------|----------------|----------------|----------------|------|-------|-------------------------|----------------|----------------|---|------|----------------------------------| | [mm] | [Nm] | [Nm] | [min ⁻¹] | max
[mm] | max
[mm] | [mm] DIN 933 8.8 | [Nm] | undrilled
[kg | | 112 | 250-12,7
300-12,7 | 450 | 4580
3820 | 48 | 42 | 79 | 68 | 60 | 123,5 | 55,8
53,8 | 2,5
-2,5 | 3,5±1,0 | 6 x M8 x 16
6 x M8 x 22 | 25 | 8,8
11,7 | | 128 | 300-12,7 | 550 | 3820 | 55 | 52 | 90 | 85 | 70 | 143,5 | 60,8 | 4,5 | 3,5±1,0 | 6 x M8 x 25 | 25 | 14,6 | | 148 | 300-12,7 | 1000 | 3820 | 65 | 58 | 107 | 94 | 80 | 163,5 | 67,8 | 11,5 | 3,5±1,0 | 6 x M10 x 25 | 49 | 18,4 | | 168 | 356-12,7
406-12,7 | 1600 | 3225
2825 | 75 | 72 | 124 | 118 | 90 | 183,5 | 81,8
84,8 | 2,5 | 3,5±1,5 | 8 x M10 x 30 | 49 | 28,7
31,5 | | 194 | 406-12,7
457-12,7 | 2750 | 2825
2510 | 85 | 85 | 140 | 138 | 100 | 203,5 | 90,8
87,8 | 8,5 | 3,5±1,5 | 8 x M12 x 30 | 85 | 39,9
44,9 | | 214 | 406-12,7
457-12,7 | 3350 | 2825
2510 | 95 | 92 | 157 | 153 | 110 | 224,0 | 96,8
93,8 | 14,5 | 4,0±2,0 | 9 x M12 x 30
9 x M12 x 35 | 85 | 49,6
54,6 | | 240 | 457-12,7
514-12,7 | 4200 | 2510
2230 | 110 | 102 | 179 | 168 | 120 | 244,0 | 100,8 | 21,5 | 4,0±2,0 | 10 x M12 x 35 | 85 | 67,1
73,1 | | 265 | 457-12,7
514-12,7 | 8700 | 2510
2230 | 120 | 120 | 198 | 198 | 140 | 285,5 | 115,8 | 36,5 | 5,5±2,5 | 10 x M16 x 35 | 210 | 90,5
95,5 | | 295 | 514-12,7
610-12,7 | 9800 | 2230
1880 | 130 | 130 | 214 | 214 | 150 | 308,0 | 123,8 | 44,5 | 8,0±2,5 | 10 x M16 x 35 | 210 | 115,4
126,4 | | 330 | 514-12,7
610-12,7 | 10600 | 2230
1880 | 150 | 150 | 248 | 248 | 160 | 328,0 | 129,8 | 50,5 | 8,0±2,5 | 10 x M16 x 40 | 210 | 150,9
161,9 | | 370 | 610-12,7
711-12,7 | 13500 | 1880
1615 | 170 | 170 | 278 | 278 | 180 | 368,0 | 143,8
140,8 | 64,5 | 8,0±2,5 | 11 x M16 x 40
11 x M16 x 45 | 210 | 215,0
230,7 | | 415 | 610-12,7
711-12,7
812-12,7
915-12,7 | 16000 | 1880
1615
1410
1255 | 190 | 185 | 315 | 308 | 200 | 408,0 | 160,8
157,8
151,8 | 81,5 | 8,0±2,5 | 12 x M16 x 40
12 x M16 x 45
12 x M16 x 50 | 210 | 282,0
297,3
330,4
360,8 | The torque T_{Cnom} and T_{Cpeak} is valid for: - Intermediate rings of Perbunan Pb72 and/or Pb82, - Ambient temperatures of -30 °C to +60 °C, - Operation within the stipulated alignment values. During the layout of the coupling according to DIN 740 part 2 (or also catalogue NOr-Mex[®]) different factors must be considered: - with higher temperatures a corresponding temperature factor Sυ - according to the starting frequency a starting factor Sz - in dependence on the operating conditions an impact factor, SA, SL With circumferential speeds of more than 22 m/s, we recommend to balance the coupling. For the execution EBS see execution drawing. # 7 Assembly ### 7.1 Pay attention before the assembly - Danger of injuries! - Disconnect the drive before carrying out any work on the coupling! - Secure the drive against unintentional re-start and rotation! - Incorrectly tightened bolts can cause serious personal injuries and property damages! - Assemble the coupling outside of the danger zone. Take care that suitable transportation means are at disposal and that the transportation ways are free of obstacles. - In compliance with accident prevention regulations, you are obliged to protect all freely rotating parts by means of permanently installed guards/ covers against unintentional contact and falling down objects. - To avoid sparks, the covers for couplings used should be made of stainless steel! - As a minimum, the covers have to fulfil the requirements of protection type IP2X. - The covers have to be designed to prevent dust from depositing on the coupling. - The cover must not contact the coupling or impair the proper function of the coupling. - Make sure that the intended rotational speeds and torques as well as the ambient temperatures do not exceed the values indicated in "6 Technical Data". - The maximum permissible borehole diameter must not be exceeded. - Check whether the shaft hub connections can safely transmit the occurring operating torques. - The standard TSCHAN tolerance for the finished boreholes is fit H7. - Standard parallel key slot is according to DIN 6885 page 1. - Check the dimensions and tolerances of shafts, hub boreholes, parallel key and slot. - Adjust setscrews as required. ### 7.2 Finished borehole For the completion of the finished borehole in a coupling hub, pay attention to following procedure: - Clean the coupling hub of preservatives. - Tighten the coupling hub to the faces labelled with \(\Gamma\) and carefully align the coupling hub. - The indicated values in table 2 and 3 for ød_{1max} and ød_{6max} are valid for a parallel key connection according to DIN 6885/1 and must not be exceeded. - Choose the borehole fit so that during the union with the shaft tolerance a wringing fit and/or an interference fit as for example at H7/m6 is carried out. - Provide a setscrew for axial securing on the hub back above the parallel key slot. In the case of other shaft hub connections consultation with TSCHAN GmbH is necessary. - The maximum indicated borehole diameters are valid for a parallel key connection according to DIN 6885/1 and must not be exceeded. - In the case of transgression of these values the coupling can sever. - Through flying away fragments danger exists! ### 7.3 Installing coupling - Remove the elastic intermediate ring (Figure 3, pos. 1). - Clean the borehole of the flange hub and the shaft end before installing. The surfaces must be clean, dry and grease-free. - Use suitable installation aids and hoists such as cranes or pulley blocks in the case of bigger couplings. - Pull the pre-mounted coupling halves in the intended position on the shaft ends (Figure 3, pos. 2). Fig. 3 ### Reference: For easier installation a uniform warming of the hub to 80 °C to 120 °C is safe. - Warning! - Only work with gloves as a protection against hot parts of the coupling! - Mount the hub so that the shaft ends are flush with the interior borehole opening (Figure 4). Pay attention to possible differing agreements! - Secure possible available setscrews by tightening with an adhesive e.g. Loctite 222 against automatic loosening and flying out. Fig. 4 #### ATTENTION! Let the hot hub cool off to ambient temperature before the introduction of the intermediate ring. - For easier mounting the elastic intermediate ring can be provided with a slip additive (e.g. Talcum) before introduction. - Fit the intermediate ring into one half of the coupling - Push the shaft end with the mounted coupling halves together (Figure 5). - Adjust the coupling according to the following specifications in "8 Coupling adjustment". Fig. 5 # 8 Adjusting coupling - Injury hazard! - Switch-off the drive before all work on the coupling! - Secure the drive against unintentional switching on and rotating! - Reference: - An exact alignment of the coupling increases the service life of the elastic intermediate ring. - Do not exceed the maximum permissible displacement values. The overstepping of these values results in coupling damage and breakdown! - When aligning the cold equipment take into account the expected thermal growth of the components, so that the permissible misalignment values for the coupling are not exceeded in operation. - Be aware that the coupling under misalignment imposes restoring forces on the adjacent shafts and bearings. Take into account that the larger the misalignment, the greater the restoring forces will be. - The displacements values indicated in the tables 4 to 6 are maximum permissible guide numbers. - We recommend not to fully utilise these values during the alignment, so that in operation sufficient reserves remain for thermal expansions, foundation settlements etc. - In special cases with high demands on quiet running or high rotating speeds it is possible that, in the three displacement levels, an alignment accuracy of ≤ 0,1 mm is necessary. - If the coupling is mounted in a closed housing / casing so that a subsequent alignment is not possible any more, it must be guaranteed that the geometry and fit accuracy of the contact surfaces in operation aligns the shafts exactly within the mentioned tolerances. ### 8.1 Angular misalignment ΔK_w - Measure on the face of the external diameter a complete rotation (360°). Determine in this case the greatest deviation ΔK_{w1} as well as the smallest deviation ΔK_{w2} (Figure 6). - Calculate the angular misalignment $\Delta K_w = \Delta K_{w1} \Delta K_{w2}$. - The values in table 4 are valid for a reference rotation speed of 1500 min⁻¹. Fig. 6 Table 4 Maximum permissible displacement values - angular: | Size | 112 | 128 | 148 | 168 | 194 | 214 | 240 | 265 | 295 | 330 | 370 | 415 | |--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | ΔK _{w max} [mm] | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | # 8.2 Radial displacement ΔK_r - Measure a complete rotation (360°). Determine in this case the greatest deviation ΔK_{r1} as well as the smallest deviation ΔK_{r2} (Figure 7). - Calculate the radial displacement $\Delta K_r = 0.5 \times (\Delta K_{r1} \Delta K_{r2})$. Pay attention to the operational sign of the measured values. - The values of table 5 are valid for a reference rotation speed of 1500 min⁻¹. Fig. 7 Table 5 Maximum permissible displacement values - radial: | Size | 112 | 128 | 148 | 168 | 194 | 214 | 240 | 265 | 295 | 330 | 370 | 415 | |-------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | $\Delta K_{r max}$ [mm] | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | ### 8.3 Axial displacement - Measure the axial S₁ gap measurement according to figure 8. - Keep, when aligning the gap measurement S, to the maximum permissible tolerance X according to table 6. ### **ATTENTION!** If greater axial displacements are expected in operation, consultation with TSCHAN GmbH is necessary. Fig. 8 Table 6 Recommended alignment values - axial: | Size | 112 | 128 | 148 | 168 | 194 | 214 | 240 | 265 | 295 | 330 | 370 | 415 | |--------|-----|-----|-----|------|------|-----|-----|------|------|------|------|------| | S [mm] | 3,5 | 3,5 | 3,5 | 3,5 | 3,5 | 4 | 4 | 5,5 | 8 | 8 | 8 | 8 | | X [mm] | ±1 | ±1 | ±1 | ±1,5 | ±1,5 | ±2 | ±2 | ±2,5 | ±2,5 | ±2,5 | ±2,5 | ±2,5 | # 9 Operation When using the coupling attention is to be paid to its characteristics (see "6 Technical data"). These can in no case be exceeded without having a written agreement from TSCHAN GmbH. In order to guarantee a faultless, lasting operation of the coupling, it must be laid out according to the regulations e.g. DIN 740 part 2 (or according to catalogue NOr-Mex [®]) with an operating factor corresponding to its operating conditions. Every change of the conditions of use or the operating parameters makes an inspection of the coupling layout urgently necessary. - Injury danger! - Switch-off the drive before all work on the coupling! - Secure the drive against unintentional switch-on and rotating! - Due to incorrectly tightened screws parts can fly away and cause serious injuries to persons and damage to material! - Check before commissioning the coupling the alignment and all screw fastenings for their specified tightening torque and/or firm seating! - Before commissioning the plant install all protective devices against unintentional touching of free moving and/or rotating parts. - To avoid sparks coverings in stainless steel should be used. - The coverings must fulfil at least the protection type IP2X. - The covering is to be so designed that it does not deposit dust onto the coupling parts. - The covering must not touch the coupling or influence it in its functioning. ### Pay attention during the operation of the coupling to: - Changed running noises - Occurring vibrations #### Attention! - If irregularities are found during operation of the coupling, the drive must be immediately switched off. - Detect according to the following table 7, "Operating faults and their possible causes" the faults and remove. - The listed faults are some examples which are supposed to facilitate fault location. - For fault finding and elimination all machine components and operating states are to be considered! Table 7 Operating faults and their possible causes: | Trouble | Cause | Risk Warning | Correction | |---|------------------------------------|--|---| | Irregular
running
noises/
vibrations | Alignment fault | Considerable increase in coupling temperature. Premature wear of elastic buffers. Increased reaction forces act on connected machines. | Disconnect drive Remove cause for alignment fault Re-align coupling Inspect elastomer for wear | | | Elastomer
worn out | Coupling claws
strike against
each other. Spark
formation, claw
fracture, in-
creased reaction
forces. | Disconnect drive Check coupling components for
damages and replace parts, if ne-
cessary Replace elastomer | | | Unbalance | Considerable increase in coupling temperature. Premature wear of elastic buffers. Increased reaction forces act on connected machines | Disconnect drive Verify balance state of plant components and correct it, if necessary Inspect elastomer for wear | | | Loose
screw
connecti-
ons | Flying off parts
can cause serious
injuries and
considerable
damages. | Disconnect drive Check coupling parts for damages, replace parts, if necessary Verify alignment of coupling Tighten screws to the specified tightening torque and secure them against working loose, if necessary, Inspect elastomer for wear | | Premature
wear of
elastomer | Alignment fault | Considerable increase in coupling temperature. Increased reaction forces act on connected machines. | Disconnect drive Remove cause for alignment fault Re-align coupling Inspect elastomer for wear | | Trouble | Cause | Risk Warning | Correction | |------------------|--|--|--| | | Unaccepta
ble
temperatur
es | Material properties of elastic buffers change. The torque transmission capability is adversely affected. | Disconnect drive Replace elastomer Re-align coupling Adjust ambient temperature | | | Contact with aggressive products | Material properties of elastic buffers change. The torque transmission capability is adversely affected. | Disconnect drive Check coupling parts for damages and replace parts, if necessary Replace elastomer Verify alignment of coupling Prevent contact with aggressive products | | | Torsional vibrations in the drive line | Considerable increase in coupling temperature. Premature wear of elastic buffers. Increased reaction forces act on connected machines. | Disconnect drive Analyse and eliminate cause for torsional vibrations Check coupling parts for damages and replace parts, if necessary Replace elastomer and consult TSCHAN GmbH concerning eventual use of another Shore-hardness Verify coupling alignment | | Claw
breakage | Wear limit of elasto- mer exceeded ===> contact of claws | Coupling is destroyed. Connected machines can be affected, too. | Disconnect drive Replace coupling Inspect the elastomer for wear at shorter intervals | | | Overload
due to too
high torque | Coupling is destroyed. Connected machines can be affected, too. | Disconnect drive Verify coupling design in cooperation with TSCHAN GmbH Replace coupling Install larger coupling, if necessary | ### 10 Maintenance The elastic coupling Nor-Mex [®]- EBT, ETW have in operation a low-maintenance. Reaching the wear limit of the elastic intermediate ring depends on the operating parameters and the conditions of use. In the case of routine monitoring work on the plant check: - Alignment of the coupling - Elastomer state - Remove dust deposits from the coupling parts and the intermediate ring ### 10.1 Wear Inspection on the Buffer Ring - Danger of injuries! - Disconnect the drive before carrying out any work on the coupling! - Secure the drive against unintentional switching on and rotating! Perform a visual inspection and a wear inspection of the buffer ring after 2000 hours, or after 3 months at latest, after the first start-up of the equipment. If only minor wear or no wear is observed, further inspections of the plant can be carried out at regular intervals of 4000 hours, however, at least once a year, if the operating modes and conditions of the plant remain unchanged. However, should you observe excessive wear on the occasion of this first inspection already, check whether the cause for the problem is listed in table 7 "Operation faults and possible causes". In such a case, the inspection intervals must be adapted to the prevailing service conditions. On the occasion of routine inspections or maintenance work on the drive equipment, or after 3 years at latest: - Replace the elastic buffer ring. - If the wear limit has been reached or exceeded, replace the buffer ring immediately, irrespective of the inspection intervals of the equipment. - Check the alignment of the coupling. - Remove dust deposits from the coupling components and buffer ring. ### 10.2 Wear limit of elastic buffers Replace the elastic buffer ring as soon as the coupling has a distinct torsional backlash, or if the minimum buffer thickness (PD_{min} , Fig. 9) acc. to table 8 has been reached. Fig. 9 Buffer thickness Table 8 Minimum buffer thickness PD_{min}: | Size | 112 | 128 | 148 | 168 | 194 | 214 | 240 | 265 | 295 | 330 | 370 | 415 | |------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | PD _{min} [mm] | 9 | 9 | 10 | 10 | 10 | 10 | 11 | 12 | 13 | 14 | 16 | 17 | # 10.3 Changing the elastic intermediate ring - Injury hazard! - Switch-off the drive before all work on the coupling! - Secure the drive against unintentional switching on and rotating! - Pull back a shaft with mounted coupling hub (Figure 10, Pos. 2). - Remove the intermediate ring (Figure 10, Pos. 1). - For easier mounting, the new intermediate ring can be provided with a slip additive before introduction (e.g. Talcum). - Insert a new intermediate ring. - Push the coupling halves together again. - Adjust the coupling according to the specifications in "8 Coupling adjustment". Fig. 10 ### 10.4 Assembly brake drum/disk #### Attention! The contact surfaces of coupling hub and brake drum/disk must be clean, dry and free of grease. Balanced parts are match marked to each other. - Place the brake drum/disk in their proper position as marked. Make sure that the parts do not get canted at the centering seats when joining them. - Slightly tighten the screws. - Tighten the screwed connections of brake drum/disk to the proper torque M_{A-BS} specified in table 9. - Check the alignment of the coupling according to the instructions given in chapter 8 'Coupling Alignment". Table 9 Tightening torques M_{A-BS} for brake drum/disk threaded joints: | Size | 112 | 128 | 148 | 168 | 194 | 214 | 240 | 265 | 295 | 330 | 370 | 415 | |------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | DIN 933- 8.8 | 8 | 8 | 10 | 10 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | 16 | | M _{A-BS} [Nm] | 25 | 25 | 49 | 49 | 85 | 85 | 85 | 210 | 210 | 210 | 210 | 210 | ### Warning! - Before commissioning the plant install all protective devices against unintentional touching of free rotating parts. - To avoid sparks coverings in stainless steel should be used. - The coverings must fulfil at least the protection type IP2X. - The covering is to be so designed that it does not deposit dust onto the coupling parts. - The covering must not touch the coupling or influence it in its functioning. When using accessories and spare parts which were not originally manufactured by TSCHAN GmbH, no liability or guarantee for any damages will be accepted. # 11 Waste Disposal The waste disposal has to occur according to the specific regulations of the respective user country.